The Golden Ratio
Golden Ratio, Mathematics
Golden Ratio φ = (1+sqrt(5))/2 = 1.6180339887498948482…
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities a and b with a > b > 0. Two quantities a and b are said to be in the golden ratio φ if
(a+b)/a = a/b = φ
One method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ:
(a+b)/a = 1+ b/a = 1+1/φ
Therefore: 1+1/φ = φ
Multiplying by φ gives: φ^2 – φ – 1 = 0
Using the quadratic formula, two solutions are obtained::
φ = (1- sqrt(5))/2 or φ = (1+sqrt(5))/2
Because φ is the ratio between positive quantities φ is necessarily positive:
φ = (1+sqrt(5))/2 = 1.6180339887498948482…
See more at Golden Ratio.
Image: Phi (golden number) by Steve Lewis.
From Ratak Monodosico.